Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Immunol ; 15: 1343900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720902

RESUMO

Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease. In particular, immune-based blood-biomarkers might be a promising option, given the recently discovered cross-talk of immune cells of the central nervous system with those in the peripheral immune system. Here, we give a background on recent advances in research on brain-immune system cross-talk in Alzheimer's disease and review machine learning approaches, which can combine multiple biomarkers with further information (e.g. age, sex, APOE genotype) into predictive models supporting an earlier diagnosis. In addition, mechanistic modeling approaches, such as agent-based modeling open the possibility to model and analyze cell dynamics over time. This review aims to provide an overview of the current state of immune-system related blood-based biomarkers and their potential for the early diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Biomarcadores , Diagnóstico Precoce , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/imunologia , Doença de Alzheimer/sangue , Humanos , Biomarcadores/sangue , Aprendizado de Máquina , Animais
2.
MAGMA ; 36(1): 33-42, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36287282

RESUMO

OBJECTIVE: Treatment response assessment in patients with high-grade gliomas (HGG) is heavily dependent on changes in lesion size on MRI. However, in conventional MRI, treatment-related changes can appear as enhancing tissue, with similar presentation to that of active tumor tissue. We propose a model-free data-driven method for differentiation between these tissues, based on dynamic contrast-enhanced (DCE) MRI. MATERIALS AND METHODS: The study included a total of 66 scans of patients with glioblastoma. Of these, 48 were acquired from 1 MRI vendor and 18 scans were acquired from a different MRI vendor and used as test data. Of the 48, 24 scans had biopsy results. Analysis included semi-automatic arterial input function (AIF) extraction, direct DCE pharmacokinetic-like feature extraction, and unsupervised clustering of the two tissue types. Validation was performed via (a) comparison to biopsy result (b) correlation to literature-based DCE curves for each tissue type, and (c) comparison to clinical outcome. RESULTS: Consistency between the model prediction and biopsy results was found in 20/24 cases. An average correlation of 82% for active tumor and 90% for treatment-related changes was found between the predicted component and population-based templates. An agreement between the predicted results and radiologist's assessment, based on RANO criteria, was found in 11/12 cases. CONCLUSION: The proposed method could serve as a non-invasive method for differentiation between lesion tissue and treatment-related changes.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Meios de Contraste , Algoritmos , Imageamento por Ressonância Magnética/métodos
3.
J Magn Reson Imaging ; 57(1): 285-295, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35521943

RESUMO

BACKGROUND: Quantitative MRI can elucidate the complex microstructural changes in liver disease. The Magnetization EXchange (MEX) method estimates macromolecular fraction, such as collagen, and can potentially aid in this task. HYPOTHESIS: MEX sequence, and its derived quantitative macromolecular fraction, should correlate with collagen deposition in rodents liver fibrosis model. STUDY TYPE: Prospective. ANIMAL MODEL: Sixteen adults Sprague-Dawley rats and 13 adults C57BL/6 strain mice given carbon tetrachloride (CCl4 ) twice weekly for 6 or 8 weeks. FIELD STRENGTH/SEQUENCE: A 7 T scanner. MEX sequence (selective suppression and magnetization exchange), spin-echo and gradient-echo scans. ASSESSMENT: Macromolecular fraction (F) and T1 were extracted for each voxel and for livers' regions of interest, additional to calculating the percentage of F > 0.1 pixels in F maps (high-F). Histology included staining with hematoxylin and eosin, picrosirius red and Masson trichrome, and inflammation scoring. Quantitative collagen percentage calculated using automatic spectral-segmentation of the staining. STATISTICAL TESTS: Comparing CCl4 -treated groups and controls using Welch's t-test and paired t-test between different time points. Pearson's correlation used between ROI MEX parameters or high-F fraction, and quantitative histology. F or T1 , and inflammation scores were tested with one-sided t-test. P < 0.05 was deemed significant. RESULTS: Rats: F values were significantly different after 6 weeks of treatment (0.10 ± 0.02) compared to controls (0.080 ± 0.003). After 8 weeks, F significantly increased (0.11 ± 0.02) in treated animals, while controls are not significant (0.0814 ± 0.0008, P = 0.079). F correlated with quantitative histology (R = 0.87), and T1 was significantly different between inflammation scores (1: 1332 ± 224 msec, 2: 2007 ± 464 msec). Mice: F was significantly higher (0.062 ± 0.006) in treatment group compared to controls (0.042 ± 0.006). F and high-F fraction correlated with quantitative histology (R = 0.88; R = 0.84). T1 was significantly different between inflammation scores (1:1366 ± 99 msec; 2:1648 ± 45 msec). DATA CONCLUSION: MEX extracted parameters are sensitive to collagen deposition and inflammation and are correlated with histology results of mouse and rat liver fibrosis model. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.


Assuntos
Cirrose Hepática , Roedores , Camundongos , Ratos , Animais , Ratos Sprague-Dawley , Estudos Prospectivos , Camundongos Endogâmicos C57BL , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Colágeno
4.
J Osteoporos ; 2023: 7861495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179189

RESUMO

Purpose: This pilot study aimed to explore the feasibility of scanning the human distal radius bone marrow in vivo to detect osteoporosis-related changes using magnetic resonance and evaluate whether the radius may serve as an accessible probing site for osteoporosis. This may lead in the future to the use of affordable means such as low-field MRI scanners for the monitoring of disease progression. Methods: A clinical trial was performed using a 3T MR scanner, including 26 women assigned into three study groups: healthy-premenopausal (n = 7; mean age 48.6 ± 3.5 years), healthy-postmenopausal (n = 10; mean age 54.5 ± 5.6 years), and osteoporotic-postmenopausal (n = 9; mean age 61.3 ± 5.6 years). Marrow fat composition was evaluated using T2 maps, a two-compartment model of T1, and a Dixon pulse sequence. Results: The osteoporotic group exhibited higher fat content than the other two groups and lower T2 values than the healthy-premenopausal group. Conclusions: Osteoporosis-related changes in the composition of the distal radius bone marrow may be detected in vivo using MRI protocols. The scanning protocols chosen here can later be repeated using low-field MRI scanners, thus offering the potential for early detection and treatment monitoring, using an accessible, affordable means that may be applied in small clinics. This trial is registered with MOH_2018-05-23_002247, NCT03742362.

5.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682594

RESUMO

Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive 'Sabra' hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acetato de Desoxicorticosterona , Hipertensão , Substância Branca , Animais , Hemorragia Cerebral/complicações , Doenças de Pequenos Vasos Cerebrais/complicações , Hipertensão/complicações , Imageamento por Ressonância Magnética , Estresse Oxidativo , Ratos , Roedores
6.
MAGMA ; 35(2): 267-276, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34357453

RESUMO

OBJECTIVE: Magnetization EXchange (MEX) sequence measures a signal linearly dependent on the myelin proton fraction by selective suppression of water magnetization and a recovery period. Varying the recovery period enables extraction of the percentile fraction of myelin bound protons. We aim to demonstrate the MEX sequence sensitivity to the fraction of protons associated with myelin in mice brain, in vivo. METHODS: The cuprizone mouse model was used to manipulate the myelin content. Mice fed cuprizone (n = 15) and normal chow (n = 8) were imaged in vivo using MEX sequence. MR images were segmented into corpus callosum and internal capsule (white matter) and cortical gray matter, and fitted to the recovery equation. Results were analyzed with correlation to MWF and histopathology. RESULTS: The extracted parameters show significant differences in the corpus callosum between the cuprizone and control groups. The cuprizone group exhibited reduced myelin fraction 26.5% (P < 0.01). The gray matter values were less affected, with 13.5% reduction (P < 0.05); no changes were detected in the internal capsule. Results were validated by MWF scans and good correlation to the histology analysis (R2 = 0.685). CONCLUSION: The results of this first in vivo implementation of the MEX sequence provide a quantitative measure of demyelination in brain white matter.


Assuntos
Doenças Desmielinizantes , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Cuprizona/metabolismo , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Prótons , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
7.
Front Mol Neurosci ; 14: 757264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776865

RESUMO

Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that intense, yet physiological, electrical activity in neurons triggers cytoskeletal depolymerization. We excited the sciatic nerve of anesthetized mice with repetitive electric pulses (5, 10, and 100 Hz) for 1 and 2 min and immediately fixed the excised nerves. We then scanned the excised nerves with high-resolution transmission electron microscopy, and quantified cytoskeletal changes in the resulting micrographs. We demonstrate that excitation with a stimulation frequency that is within the physiological regime is accompanied by a significant reduction in the density of cytoskeletal proteins relative to the baseline values recorded in control nerves. After 10 Hz stimulation with durations of 1 and 2 min, neurofilaments density dropped to 55.8 and 51.1% of the baseline median values, respectively. In the same experiments, microtubules density dropped to 23.7 and 38.5% of the baseline median values, respectively. These changes were also accompanied by a reduction in the cytoskeleton-to-cytoplasm contrast that we attribute to the presence of depolymerized electron-dense molecules in the lumen. Thus, we demonstrate with an in vivo model a link between electrical activity and immediate cytoskeleton rearrangement at the nano-scale. We suggest that this cytoskeletal plasticity reduces cellular stiffness and allows cellular homeostasis, maintenance of neuronal morphology and that it facilitates in later stages growth of the neuronal projections.

8.
J R Soc Interface ; 16(160): 20190264, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31771451

RESUMO

Predictive modelling of complex biological systems and biophysical interactions requires the inclusion of multiple nano- and micro-scale events. In many scenarios, however, numerical solutions alone do not necessarily enhance the understanding of the system. Instead, this work explores the use of an agent-based model with visualization capabilities to elucidate interactions between single cells. We present a model of juxtacrine signalling, using Cell Studio, an agent-based modelling system, based on gaming and three-dimensional visualization tools. The main advantages of the system are its ability to apply any cell geometry and to dynamically visualize the diffusion and interactions of the molecules within the cells in real time. These provide an excellent tool for obtaining insight about different biological scenarios, as the user may view the dynamics of a system and observe its emergent behaviour as it unfolds. The agent-based model was validated against the results of a mean-field model of Notch receptors and ligands in two neighbouring cells. The conversion to an agent-based model is described in detail. To demonstrate the advantages of the model, we further created a filopodium-mediated signalling model. Our model revealed that diffusion and endocytosis alone are insufficient to produce significant signalling in a filopodia scenario. This is due to the bottleneck at the cell-filopodium contact region and the long distance to the end of the filopodium. However, allowing active transport of ligands into filopodia enhances the signalling significantly compared with a face-to-face scenario. We conclude that the agent-based approach can provide insights into mechanisms underlying cell signalling. The open-source model can be found in the Internet hosting service GitHub.


Assuntos
Comunicação Celular , Imageamento Tridimensional , Modelos Biológicos , Pseudópodes/metabolismo , Teoria dos Jogos
9.
APL Bioeng ; 2(2): 026107, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069304

RESUMO

The field of computer modeling and simulation of biological systems is rapidly advancing, backed by significant progress in the fields of experimentation techniques, computer hardware, and programming software. The result of a simulation may be delivered in several ways, from numerical results, through graphs of the simulated run, to a visualization of the simulation. The vision of an in-silico experiment mimicking an in-vitro or in-vivo experiment as it is viewed under a microscope is appealing but technically demanding and computationally intensive. Here, we report "Cell Studio," a generic, hybrid platform to simulate an immune microenvironment with biological and biophysical rules. We use game engines-generic programs for game creation which offer ready-made assets and tools-to create a visualized, interactive 3D simulation. We also utilize a scalable architecture that delegates the computational load to a server. The user may view the simulation, move the "camera" around, stop, fast-forward, and rewind it and inject soluble molecules into the extracellular medium at any point in time. During simulation, graphs are created in real time for a broad view of system-wide processes. The model is parametrized using a user-friendly Graphical User Interface (GUI). We show a simple validation simulation and compare its results with those from a "classical" simulation, validated against a "wet" experiment. We believe that interactive, real-time 3D visualization may aid in generating insights from the model and encourage intuition about the immunological scenario.

10.
J Osteoporos ; 2017: 7910432, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638673

RESUMO

Osteoporosis is characterized by reduction in trabecular bone in conjunction with increased marrow cell adiposity. While these changes occur within weeks, monitoring of treatment efficacy as performed by DEXA is sensitive only to long-term changes. MRI is sensitive to bone marrow changes but is less affordable. In a recent study, we have shown that a stray-field NMR can monitor bone marrow cellular changes that are related to osteoporosis. Objectives. To demonstrate sensitivity of a low-field tabletop NMR scanner to bone marrow dynamics following hormonal treatment in rats. Methods. Two-month-old female rats (n = 36) were ovariectomized (OVX) and dosed for the ensuing 3 or 5 weeks with 20 mg/kg of PTH(1-34). Hind limbs femurs and tibiae were isolated and underwent ex vivo microradiography and histology and NMR relaxometry at 6 weeks (preventive experiment) and 11 weeks (therapeutic treatment experiment) after OVX. Results. OVX rats developed osteoporotic changes including adipogenic marrow compared to Sham and PTH treated rats. T2 and ADC NMR relaxation coefficients were found to correlate with marrow composition. Conclusions. This study suggests that stray-field NMR, an affordable method that is sensitive to the rapid cellular changes in bone marrow, may have a clinical value in monitoring hormonal treatment for osteoporosis.

11.
Magn Reson Med ; 78(3): 860-870, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27690262

RESUMO

PURPOSE: Osteoporosis is characterized by a decrease in bone mineral density (BMD). A preliminary stage of the disease is progressive bone marrow adiposity, caused by imbalance between osteogenesis and adipogenesis in the marrow. Detection of osteoporosis relies on the quantification of BMD with techniques such as dual-energy X-ray absorptiometry. This work aimed to detect bone marrow changes in an experimental model of osteopenia using a low-field tabletop NMR scanner. METHODS: An experiment was performed on 32 female rats, 3 months old, 16 of which were ovariectomized (OVX) and 16 were sham-operated (sham). The femur and tibia from both hind limbs were isolated and underwent ex vivo NMR scans at four time points after the OVX and sham operations. NMR scans were complemented by BMD measurements and histology. RESULTS: Significant changes in the bone marrow of ovariectomized rats, relative to sham operated rats, were observed after 3.5 and 4.5 months. Bone marrow adiposity was detected by significant changes in T1 and T2 relaxation times, and in the diffusion coefficient. CONCLUSIONS: This study suggests a potential detection of changes to the bone marrow using a tabletop NMR device. Clinical translation may facilitate screening, early detection of bone weakening as a result of estrogen withdrawal, and monitoring of treatment efficacy. Magn Reson Med 78:860-870, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Medula Óssea/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Osteoporose/diagnóstico por imagem , Animais , Densidade Óssea , Medula Óssea/química , Feminino , Fêmur/diagnóstico por imagem , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tíbia/diagnóstico por imagem
12.
Magn Reson Med ; 78(2): 746-753, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27510427

RESUMO

PURPOSE: To provide a biophysical basis to estimate the effect of cytoplasmic flow in neurons, and assess their contribution to the drop in the Apparent Diffusion Coefficient (ADC) in a nerve tissue following extreme conditions, such as brain injury and epileptic seizures. METHODS: Three mechanisms are treated using the relevant physics of hydrodynamics and electrostatics: cargo induced streaming, electroosmosis, and membrane swelling. RESULTS: We begin by discussing the lack of experimental evidence on the necessary velocities required to influence the Magnetic Resonance (MR) experiments. This is followed by demonstrating that cargo induced streaming, a widely known phenomenon in plant cells, has a minor effect on the ADC in neurons. Subsequently, we suggest and analyze two additional mechanisms that may induce fluid displacement in neurons, and are related to the electrical activity: electroosmosis and membrane swelling. CONCLUSION: Although these mechanisms may induce interesting fluid displacements, these cannot explain the significant drop in the ADC. We conclude by outlining the criteria that any future mechanism should meet to have an influence on standard diffusion-MR measurements. Magn Reson Med 78:746-753, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Modelos Teóricos , Potenciais de Ação/fisiologia , Citoplasma/fisiologia , Difusão , Eletro-Osmose , Humanos , Neurônios/fisiologia
13.
PLoS One ; 11(12): e0168805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997608

RESUMO

BACKGROUND: Regulation of hepatic glucose production has been a target for antidiabetic drug development, due to its major contribution to glucose homeostasis. Previous pre-clinical study demonstrated that peripheral electrical stimulation (PES) may stimulate glucose utilization and improve hepatic insulin sensitivity. The aim of the present study was to evaluate safety, tolerability, and the glucose-lowering effect of this approach in patients with type 2 diabetes (T2DM). METHODS: Twelve patients with T2DM were recruited for an open label, interventional, randomized trial. Eleven patients underwent, in a crossover design, an active, and a no-intervention control periods, separated with a two-week washout phase. During the active period, the patients received a daily lower extremity PES treatment (1.33Hz/16Hz burst mode), for 14 days. Study endpoints included changes in glucose levels, number of hypoglycemic episodes, and other potential side effects. Endpoints were analyzed based on continuous glucose meter readings, and laboratory evaluation. RESULTS: We found that during the active period, the most significant effect was on nocturnal glucose control (P < 0.0004), as well as on pre-meal mean glucose levels (P < 0.02). The mean daily glucose levels were also decreased although it did not reach clinical significance (P = 0.07). A reduction in serum cortisol (P < 0.01) but not in insulin was also detected after 2 weeks of treatment. No adverse events were recorded. CONCLUSIONS: These results indicate that repeated PES treatment, even for a very short duration, can improve blood glucose control, possibly by suppressing hepatic glucose production. This effect may be mediated via hypothalamic-pituitary-adrenal axis modulation. TRIAL REGISTRATION: ClinicalTrials.gov NCT02727790.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Terapia por Estimulação Elétrica/métodos , Idoso , Estudos Cross-Over , Feminino , Humanos , Hidrocortisona/sangue , Insulina/sangue , Masculino , Pessoa de Meia-Idade
14.
Metabolism ; 65(6): 863-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173465

RESUMO

BACKGROUND: The epidemic nature of type 2 diabetes mellitus (T2DM), along with the downsides of current treatments, has raised the need for therapeutic alternatives. METHODS: We studied normo-glycemic and high-fat diet (HFD), induced insulin-resistant Wistar Han rats for 2 to 3weeks. Rats received peripheral electrical stimulation (PES) treatment (2Hz/16Hz bursts, 10mA) in their hind limbs for 3min, 3 times per week. Glucose tolerance was evaluated by using a glucose tolerance test at the beginning and again at the end of the study. The effect of an acute PES treatment on metabolic rates of glucose appearance and turnover was measured by using the hyperinsulinemic-euglycemic clamp (HEGC) test. RESULTS: Repeated PES treatment significantly inhibited the progression of glucose intolerance in normal and insulin-resistant rats and prevented HFD-induced gains in body weight and fat mass. Acute treatment induced a prolonged effect on glucose turnover, as evaluated by the HEGC test. Increased hepatic glucose output was observed during the basal state (P<0.005). Under hyperinsulinemic conditions, PES improved tissue sensitivity to insulin (41.1%, P<0.01), improved suppression of hepatic glucose production (58.9±4.4% vs. 87.1±4.4%, P<0.02) and significantly elevated the rate of glycogenesis (P<0.01), compared with controls. CONCLUSIONS: The present study indicates that a noninvasive PES treatment of very short duration is sufficiently potent to stimulate glucose utilization and improve hepatic insulin sensitivity in rats. Repeated PES treatment may have a beneficial effect on HFD-induced adiposity and control of body weight.


Assuntos
Estimulação Elétrica , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Animais , Técnica Clamp de Glucose , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
15.
Neuroimage ; 135: 333-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27126002

RESUMO

We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.


Assuntos
Algoritmos , Axônios/ultraestrutura , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Substância Branca/citologia , Substância Branca/diagnóstico por imagem , Animais , Interpretação Estatística de Dados , Furões , Aumento da Imagem/métodos , Técnicas In Vitro , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuições Estatísticas
16.
Cell Transplant ; 25(8): 1575-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26850009

RESUMO

Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1ß, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.


Assuntos
Autoimunidade/fisiologia , Ilhotas Pancreáticas/metabolismo , Linfócitos/metabolismo , Animais , Autoimunidade/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Insulina/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos SCID , Fator de Necrose Tumoral alfa/metabolismo
17.
NMR Biomed ; 28(12): 1726-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510537

RESUMO

Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.


Assuntos
Mapeamento Encefálico/instrumentação , Cálcio/metabolismo , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Microscopia de Fluorescência/instrumentação , Rede Nervosa/fisiologia , Animais , Biomimética/métodos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Imagem Multimodal/instrumentação , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
NMR Biomed ; 28(6): 656-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900247

RESUMO

Human skin undergoes morphological and biochemical changes as a result of chronological aging and exposure to solar ultraviolet irradiation (photoaging). Noninvasive detection of these changes may aid in the prevention and treatment of both types of aging. This article presents a noninvasive method for the evaluation of aging skin with a unilateral stray field NMR scanner. These portable and inexpensive scanners may be suitable for in-depth skin characterization. In vivo profiles of sun-protected and sun-exposed skin from the forearms of female subjects of different ages (n = 9) were measured. Skin biopsies for histopathological examination were used as reference. T2 analysis with a bi-exponential decay model was applied and the extracted parameters were examined as markers for dermal aging. In the upper reticular dermis, a significant increase in the fraction of the slow T2 component and in the T2 value itself was found to correlate with chronological aging. For most subjects, there was an additional increase in the values of the slow T2 component and the T2 values from the sun-exposed forearm, superimposed on that measured for the sun-protected forearm. These results are in agreement with the decline in collagen content and the increase in free water content with aging. The results suggest that such a technique can be used as a tool for the assessment of aging, and that bi-exponential fitting can produce sensitive fingerprint parameters for the dermal alterations that occur during aging.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Envelhecimento da Pele/fisiologia , Envelhecimento da Pele/efeitos da radiação , Pele/química , Pele/efeitos da radiação , Luz Solar , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Pessoa de Meia-Idade , Modelos Biológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
19.
J Magn Reson ; 246: 36-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064269

RESUMO

Here we present the successful translation of a pore size distribution (PSD) estimation method from NMR to MRI. This approach is validated using a well-characterized MRI phantom consisting of stacked glass capillary arrays (GCA) having different diameters. By employing a double pulsed-field gradient (d-PFG) MRI sequence, this method overcomes several important theoretical and experimental limitations of previous single-PFG (s-PFG) based MRI methods by allowing the relative diffusion gradients' direction to vary. This feature adds an essential second dimension in the parameters space, which can potentially improve the reliability and stability of the PSD estimation. To infer PSDs from the MRI data in each voxel an inverse linear problem is solved in conjunction with the multiple correlation function (MCF) framework, which can account for arbitrary experimental parameters (e.g., long diffusion pulses). This scheme makes no a priori assumptions about the functional form of the underlying PSD. Creative use of region of interest (ROI) analysis allows us to create different underlying PSDs using the same GCA MRI phantom. We show that an s-PFG experiment on the GCA phantom fails to accurately reconstruct the size distribution, thus demonstrating the superiority of the d-PFG experiment. In addition, signal simulations corrupted by different noise levels were used to generate continuous and complex PSDs, which were then successfully reconstructed. Finally, owing to the reduced q- or b- values required to measure microscopic PSDs via d-PFG MRI, this method will be better suited to biomedical and clinical applications, in which gradient strength of scanners is limited.


Assuntos
Axônios/química , Axônios/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Porosidade , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia
20.
J Magn Reson ; 245: 87-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25023564

RESUMO

Unilateral NMR devices are valuable tools used to study non-invasively arbitrarily-sized objects. They have been utilized in various applications, including non-destructive testing and well logging. However, measurements with such scanners are characterized by a low sensitivity, which is mainly the result of the low and inhomogeneous magnetic field B0. The resulting poor signal to noise ratio (SNR) is a prominent limitation, as it deteriorates the accuracy of data analysis. Improving the SNR is typically done by the use of averaging repetitions that result in too long scan times. This work presents a statistical signal-processing method that can improve the sensitivity of a Carr-Purcell-Meiboom-Gill (CPMG)-like sequence for measurements of transverse-relaxation with unilateral scanners. The method improves the extraction of the decay curve from the noisy data. This is done by exploiting the redundancy in the acquired signal and by the use of the noise characteristics, which are both incorporated into a weighted least-squares estimation approach. This technique is especially effective in applications where RF shielding is not in use, and the measurements are corrupted by dominant non-white noise. The method performance was evaluated with a series of CPMG-like measurements applied on two samples. Decay curves were extracted from each measurement with the proposed method and were compared to a conventional extraction of the decay curve. All measurements showed a significant improvement in the accuracy of estimation of the decaying signal. Thus, the improvement in the sensitivity can be translated into a reduction in the acquisition times (by reducing the need in averaging repetitions) or to a more accurate fitting process of the traverse relaxation distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...